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Two-dimensional type-I intermittency
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The general structure of two-dimensional intermittency is discussed. The structure of channel and the
trajectory in the return map are compared with those of one-dimensional intermittency and the scaling relations
are obtained according to the trajectory. We illustrate the temporal behavior and scaling relations in a coupled
map. The numerical results agree well with the theoretical predication of^ l &;1/Ae.
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Intermittency is an occurrence of the signal that random
alternates between almost regular~so-called laminar! periods
and shorter chaotic bursts@1,2#. The phenomenon is fre
quently observed in real fluids, irregular reversals of
Earth’s magnetic field, earthquakes, electronic circuits,
@3#. As it was considered to be one of the main routes
chaos, theoretical and experimental investigations follow
to explore its scaling properties@4–6#. The scaling relation
of the average laminar length depends not only on the st
ture of the local Poincare´ map@2# but also on the reinjection
probability distribution@6#, since the laminar phase appea
when a trajectory passes through the narrow channel betw
the local Poincare´ map and the diagonal line in the retu
map and after escaping from the channel, the trajectory
turns to it with a certain probability according to the glob
structure of the system. Also, the phenomenon shows
anomalous scaling relation@7,8# when noise is presented.

Recently, it was reported that intermittency is very impo
tant to the analysis of phase jump phenomena and the m
terious scalings near the synchronous regime@9#: For ex-
ample, the investigation of type-I intermittency with noi
enables us to analyze the phase jump phenomena and sc
in the coupled Ro¨ssler oscillators@7# and so does type-I
intermittency with noise in the hyper-Ro¨ssler oscillators@8#.
So studies of resolving the roots of phase synchroniza
were reinitiated in connection with intermittency. Despite
the rush, however, the problem is that all the studies
limited to low-dimensional chaotic systems because the m
known intermittency is the low-dimensional phenomen
that can be described in a one-dimensional return map
analyze phase synchronization of high-dimensional cha
systems, studies of high-dimensional intermittency are
quired.

In this paper, as the first step for investigating hig
dimensional intermittency, we introduce two-dimension
type-I intermittency@10# that occurs near the tangent bifu
cation point like one-dimensional one, but which can be
lustrated in a two-dimensional map that is not reducible
the one-dimensional return map@11#. We discuss the feature
of the system in comparison with those of one-dimensio
intermittency in terms of scaling behaviors and the chan
structure of the map.

The first-order difference equation ind dimension@12# is
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xWn115 fW~xWn!, ~1!

wherexWnPRd andRd is thed-dimensional Euclidean vecto
space. The necessary condition for high-dimensional in
mittency isd>2. In order to set up the return map in high
dimension, we consider (2d)-dimensional vector space wit
(xWn1p ,xWn) by following the analogy in the one-dimension
return map, wherexWn1p is the p-iterated image ofxWn such
that xWn1p5 fW (p)(xWn) andp is the period of neighboring peri
odic orbit. The equationxWn1p5xWn defines ad-dimensional
diagonal hyper surface~DHS!, which is ad-dimensional ob-
ject embedded in (2d)-dimensional space.

It is difficult to visualize the geometrical shape of th
high-dimensional return map unlike in one-dimension. F
tunately, however, in a two-dimensional system we are a
to devise a suitable scheme to visualize the return map@13#.
So we consider two-dimensional map such thatxn11
5 f (xn ,yn), yn115g(xn ,yn), which is locally defined near
the bifurcation point. If we arrange two degrees of freedo
xn11 andyn11, on the same axis we obtain a tractable thre
dimensional view in terms of (xn ,yn ,xn11 ,yn11) coordi-
nates and we call it a two-dimensional return map. The D
is the two-dimensional surface embedded
(xn ,yn ,xn11 ,yn11) space that is defined byxn115xn and
yn115yn ~see Fig. 1! @14#.

The gap between the DHS and the local map form
channel and the system is in a state of the laminar ph
when the trajectory passes the channel. The structure o
two-dimensional return map@13# can be clearly understoo
when we compare it with that of the one-dimensional o
The diagonal line in the one-dimensional return map
comes the DHS in the two-dimensional one. That is,
parabolic curve (xn115axn

21xn1e) in the one-dimensiona
return map becomes~because of the local property near th
tangent bifurcation point! the parabolic surface in two
dimension such that

xn115a1xn
21a2yn

21a3xnyn1a4xn1a5yn1a6 ,
~2!

yn115b1xn
21b2yn

21b3xnyn1b4xn1b5yn1b6 ,

whereai and bi are the arbitrary expansion coefficients.
the two-dimensional return map, there are two independ
directions (xn , yn) and the next iteration point is determine
by the sum of two evolution vectors.
©2001 The American Physical Society02-1
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Figure 1 shows a schematic view of our two-dimensio
return map and its channels. According to the orbit~seeO1 ,
O2, and O3 in Fig. 1! on thexn-yn plane the channel be
tween the DHS and the local Poincare´ map is differently
formed as given in Fig. 1 and this causes the channel di
bution. So in high-dimensional intermittency, one of the c
cial factors that affect the laminar scaling is channel dis
bution function~CDF! P(e).

The evolution procedure is as follows: at the initial po

(xn* ,yn* ) we obtain the normal vectorsnW x andnW y on thexn-
yn plane and they contact at the points ofcx

5(xn* ,yn* ,xn11* ) and cy5(xn* ,yn* ,yn11* ), respectively,
where xn11* 5 f (xn* ,yn* ) and yn11* 5g(xn* ,yn* ). From those

points we obtain the evolution vectorstWx and tWy after parallel
stretching of the point to the DHS in the direction ofxn and
yn , respectively. Then the next iteration point is determin

by the sum of two evolution vectors such thatrW 5 tWx1 tWy .
The same procedure can be repeated to get time evolu
of a trajectory.

The intermittent behavior in two-dimension can be clas
fied into three trajectories on thexn-yn plane @12#: ~a! the
limit cycle that shows a unique trajectory,~b! the quasiperi-
odic trajectory that uniformly fills a region and causes t
uniform distribution of channel, and~c! the chaotic one
whose channel gets a fractal structure by the chaotic pass
In case of the limit cycle, the channel structure is similar
that of one-dimensional type-I intermittency because
channel is unique. But for the others the channel structur
different from the conventional one because they suffer m
tichannel effects. Thus we see that the CDF plays a cru
role in the passage and the scaling relations of the ave
laminar length.

The above features are clearly illustrated when we c
sider the following two-dimensional map:

FIG. 1. The two-dimensional return map and the DHS.
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xn1154axn~12xn!1byn~12xn!,
~3!

yn1154ayn~12yn!1bxn~12yn!,

where a and b are parameters. The equations are tw
dimensional extensions of the logistic map and can be c
sidered as the mutually coupled system.

An example of bifurcation diagram is presented in Fig
whenb50.5. Asa grows, the system develops to chaos v
Hopf bifurcation (0.6522 . . .,a,0.7172 . . . ) andperiod
doubling one (0.7172 . . .<a) @12#. It is interesting that the
system spontaneously collapses to a one-dimensional sy
at a50.7172 . . . . This phenomenon seems to be caused
the form of the couplings. In Eq.~3!, if xn and yn are syn-
chronized by chance in the overlapped chaotic ba
(0.7017 . . .,a,0.7172 . . . ) thecoupled systems are com
pletely synchronized and reduced to a one-dimensional lo
tic map.

The temporal behaviors of two-dimensional intermitten
are given in Fig. 3 near the period-14 window at~a! a
50.674 103 . . . , b50.5 and ~b! a50.778 2651 . . . , b
50.3 @15#. They are clearly distinguishable from those of t
conventional intermittency. Figure 3~a! shows continuous in-

FIG. 2. The bifurcation diagram forb50.5. The inserted arrow
points out the critical value ofac50.674 149 . . . forperiodic orbit.
~Note that the initial condition was not reset at each step ofa to
track an attractor.!

FIG. 3. The temporal behavior of two-dimensional intermitten
near limit cycle~a! (a50.674 103,b50.5) and chaotic region~b!
(a50.778 2651,b50.3).
2-2
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BRIEF REPORTS PHYSICAL REVIEW E 63 037202
termittent jumps among laminar phases without chao
bursts. And Fig. 3~b! shows irregular intermittent jumps wit
chaotic bursts. The reason for the difference is that while
former is the intermittency passing a limit cycle@case~a!#,
the latter is that passing a slightly different channel at e
laminar phase~see Fig. 4!.

What is observed above is clearly understood when
consider a two-dimensional return map on the parabolic
face (xn ,yn ,xn11 ,yn11). But we plot the return map on th
(xn ,xn11) surface. The characteristics of two-dimension
intermittency are also revealed by the projection of the
jectory. We call this exotic one a multichannel structure
distinguish from the unique channel structure in on
dimensional intermittency@1–6#.

Meanwhile, this multichannel structure caused by the
bits like O1 ,O2 ,O3 in Fig. 1 is distinguished from the dis
persed channel structure in the presence of noise@4,7#, be-
cause the system follows a selected channel during
laminar phase. In the former, we can see a fractal-like ch
nel structure in the return map, which is not the case in
latter. In addition, it was reported that the scaling relation
the laminar length for the latter is deformed such that^ l &
;exp$(1/D)ueu3/2% ~wheree,0 andD is noise strength! by
the effect of random noise@7,8#. Thus we emphasize that th
conceptual difference between one- and high-dimensiona
termittencies is the formation of multichannel structure.

The return map betweenxn114 andxn is presented in Fig.
4 when the trajectory is chaotic. In the inset figure, we c
observe broad channel such as the effect of noise. But
not caused by noise but by the multichannel structure, wh
is the key feature of two-dimensional intermittency. This
the irreducible return map mentioned above and the in
corresponds to the projected view of the parabolic surfac
Eq. ~2!. The difference is obvious when we obtain the sc
ing relation.

The channel of this model is differently selected for ea
entrance point by following the perturbation of the coupl
systems. These channel selections evoke the transversa
viation at the entrance point. On the contrary the reinject
process evokes the tangential one@6#. Near the tangent bi-
furcation point, the local Poincare´ map can be modeled as

FIG. 4. The multichannel structure in the return mapxn114 ver-
susxn ~at a50.778 2651,b50.3).
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ẋ5ax21e~y!, ~4!

wherea is the constant ande(y) denotes the selected cha
nel. It is assumed that in Eq.~4! an appropriate principal axis
is taken in order to eliminate the cross term betweenxn and
yn in Eq. ~2!.

x andy are injected into the laminar phase simultaneou
and are in a state of the laminar phase. So if we adopt
simultaneous channel entrance approximation we can ea
integrate Eq.~4! for a particular channel and obtain the lam
nar length scaling for a channele as follows@1,4,6#:

l ~e,xin!5
1

Aae
FarctanSAa

e
cD 2arctanSAa

e
xinD G , ~5!

wherexin is the injection point andc is the escaping point o
the laminar phase. The laminar scaling for a particular ch
nel is the same as in one-dimensional case. However,
observable laminar length is the average in terms of
channel distribution function such that

^ l &5E l ~e,xin!P~e!de. ~6!

By taking the channel average we obtain the followi
scaling relation for each channel structure.

~a! Limit cycle.Near the quasiperiodic windows, we us
the CDF such thatP(e)5d(e2e0), since the trajectory is
unique on thexn-yn plane and it forms a unique chann
between the DHS and the local map. Then we obtain
following scaling law:

^ l &;
1

Ae0

. ~7!

~b! Quasiperiodic orbit.The CDF is uniform in this case
such thatP(e)51/D whereD is a constant@6# and we con-
sider the channel function such thate(y)5ay21e0 because
of the uniform passage ofy, wheree0 is the nearest channe
width. Then the laminar scaling is derived as follows:

^ l &5E l ~y,xin!P~y!
de

dy
dy;2 ln~e0!. ~8!

FIG. 5. The scaling of the laminar length on limit cycle~a!
(ac50.674 149 344 . . . , bc50.5) and chaotic region~b! (ac

50.778 265 11 . . . , bc50.3).
2-3
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BRIEF REPORTS PHYSICAL REVIEW E 63 037202
~c! Chaotic region.As shown in Fig. 4, the channel ha
the fractal structure. Because the fractal distribution is d
crete,P(e) can be represented by summation of delta fu
tions and the laminar length is actually dominated by
longest one that comes from the nearest channel widthe0 as

^ l &;
1

Ae0

. ~9!

Even though multiple channels are present, the sca
relation is invariant with that of one-dimensional type-I i
termittency. If the channel distribution is continuous the sc
ing relation of the laminar length is drastically deformed
in the case of quasiperiodic orbit@see case~b!. Quasiperiodic
orbits#. Conversely, the scaling relation of^ l &;1/Ae0 guar-
antees fractal distribution of the channels.

We simulate the laminar scaling near the period-14 w
dow and present the results in Fig. 5. Near the chaotic
limit cycle regimes, the laminar scaling shows the scal
^ l &;1/Ae0. The scaling relations confirm the previou
analyses@Eqs. ~7! and ~9!#. We do not find an appropriat
parameter range for quasiperiodic orbit in this model
expect to observe it in other systems. Once, there was a s
on two-dimensional intermittency in area-preserving ma
@16#. The author reported two different scalings but tho
e

et

,

v.

ev
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were just two different representations of the case~a!, which
were caused by different trajectories traveling around the
furcation point.

In conclusion, we have analyzed two-dimensional typ
intermittency. The return map has been extended to t
dimensional one to analyze the characteristics. Three k
of possible intermittent time series have been discussed
cording to the trajectory on thexn-yn plane and their scaling
relations were presented. The most crucial feature of tw
dimensional intermittency is the formation of multichann
structure in the one-dimensional return map. This multich
nel structure causes more complex temporal behaviors~in
Fig. 3!, but the scaling relation is invariant with that of on
dimensional type-I intermittency.

Note added.After the submission of the paper, we foun
independent study on two-dimensional intermittency of no
reducible coupled maps@17# that have different couplings
from our model maps. They have rigorously analyzed
coupled maps in terms of renormalization group analy
without discussion of the channel structure. Their scal
agrees well with ours@Eq. ~7!#.

We thank S. Rim for valuable discussions. This work w
supported by Creative Research Initiatives of the Korea M
istry of Science and Technology.
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